SITE

HISTORY & BACKGROUND

The site appears unique on Crowndale Road, due to its Victorian facade juxtaposed to the bordering 1950's council estates. The original building was erected as part of a row of terrace houses supporting the local railway infrastructure. in 1870 and in 1910 the church of England purchased the site re designed facade to what we see today.

In 1950 the council reclaimed the land leased to the rail-way to construct council housing neighbouring the church. As the church was privately owned (now expanding its land to the north for the church hall) the council chose not to purchase it as it was deemed an asset to the local community.

View from the junction of Chalton Street and Crowndale Road - aligning the datum through the site

View from the neighbouring council housing on south side of Crowndale Road

Aerial view of the site showing the proposed datum to connect Chalton Street to the theatre and beyond.

MODEL 01

SKETCH OF SCHEME

The model show how the western side of the theatre will be open to playground creating a relationship between outside audience and inside.

SKETCH RENDER IMAGE: AERIAL

NOT TO SCALE

x < 3200mm

x = 800mm

x < 600mm

ACOUSTICS SKIN

ALTERING THE SIZE OF ETFE PANEL TO ADJUST THE ACOUSTIC SCAPE

EFTE RESTRICTIONS

THE MAXIMUM WIDTH OF AN ETFE PANEL CAN BE 2M -

VARYING THE PRESSURE - SURFACE

BY VARYING THE SIZE EFFECTS THE PRESSURE RATIOS IN THE CUSHIONS WHICH EFFECTS THE SOUND DIFFUSION. Eg. A PANEL FILLED WITH LESS AIR WILL BE HAVE A GREATER SURFACE AREA AS THERE WILL BE FOLD IN THE ETFE (EVEN SLIGHT) THIS MEANS THERE WILL BE GREATER SOUND DIFFUSION.

x < 2800mm

x = 1000mm

P5 - THE NEED OF THE SOUND DIFFUSION HERE IS NOT NEEDED THEREFORE CAN REMAIN OPEN

P4 - VARYING SIZE HOWEVER THINNER ALLOWING A LESS DISTURBED VISTA OF

4 SECTIONS - VARYING THICKNESS

THE THICKNESS IS ALTERED AT EACH LEVEL IN ORDER TO EITHER ABSORB MORE SOUND OR VARY LIGHT LEVEL

P3 - VARYING THE SIZE TO INCREASE DIFFUSION OF SOUND IN THE

DIFFUSING THE SOUND

P2 -AS THESE ARE REFLECTING THE SOUND FROM THE PERFORMANCE THEY ARE LARGER CONSTANT PANELS

EARLY ACOUSTIC INVESTIGATIONS USING ETFE AS AN ACOUSTIC SKIN

THE ACOUSTIC MEMBRANE CAN BE VARIED BY THE AMOUNT OF AIR WHICH INFLATES IT, BY DOING THIS ALTERS THE ACOUSTIC PROPERTIES.

THE MORE AIR UNDER GREATER PRESSURE IS MORE DENSE THE ETFE PANEL - THEREFORE THE MORE SOUND ABSORBING IT IS.

THIS MEANS IF WHEN HAVE RESTRICTIONS ON THE SIZE THE PANELS WHICH CAN BE MADE THE PROVIDES US WITH PERIMETERS WHICH TO ALTER THE SOUND ABSORBING NATURE OF THE PANELS.

L2 [P1/4] ACOUSTIC SCAPE

EARLY INVESTIGATION -VARYING THICKNESS FOR ACOUSTIC PERFORMANCE

THE THICKNESS IS ALTERED AT EACH LEVEL IN ORDER TO EITHER ABSORB MORE SOUND OR VARY LIGHT LEVEL

EXAMPLES OF USING ETFE AS AN ACOUSTIC SKIN TO DIFFUSE SOUND IN A SPACE

L2 [P2] L2 [P4] L2 [P5] RENDERED SKETCH SECTION OF ACOUSTIC ETFE LAYER

LIGHTING QUALITY OF THE ETFE PANELS

PANEL SIZE ACOUSTIC PROPERTIES

A) LARGEST PANEL -THINNER DEPTH THEREFORE LESS AIR PRESSURE - LESS DENSE -LESS SOUND ABSORBENT, LESS SOUND REFLECTIVE HOWEVER APPEARS TO LET MORE TRANSPARENT

D- 150mm W-1200mm H - 800mm

B) MEDIUM PANEL -GREATER DEPTH THEREFORE MORE SOUND ABSORBENT AND WILL REFLECT MORE SOUND

> D- 250mm W- 1200mm H - 700mm

C) THICKEST PANEL GREATER AIR PRESSURE
THEREFORE GREATER
ABSORBANCY AND THE
SMOOTHER THE SURFACE
SO MORE SOUND
REFLECTIVE THEREFORE
GOOD FOR DIFFUSING
SOUND TO THE AUDIENCE

D- 400mm W-1200mm H - 600mm

P1 [L2] FIXED SECTION

MAIN ACOUSTIC ABSORBANCY SECTION TO THE REAR OF THE THEATRE

AS THE REAR WALL OF THE THEATRE WILL BE IN INTERACTION WITH THE SOUND IT IS IMPORTANT FOR THIS WALL TO ABSORB LARGE PROPORTION OF THE SOUND. IT WILL BE CONSTRUCTED OF PLY ACOUSTIC PANELS - THESE WILL BE BACKED WITH SOUND INSULATION. THE PLYWOOD WILL BE DRILLED WITH HOLES AT SELECT POINTS TO ABSORB SOUND.

P2 [L2] ETFE REFLECTION

FOCUS THE SOUND TOWARDS THE SPACE IN THE ACOUSTIC TRAP TO REDUCE THE ECHO

THE INEVITABLE ECHO IS PREVENTABLE BY TRAPPING THE SOUND, FORCING IT TO DIFFUSE. DIRECTING IT TOWARDS THE SPACE IN THE LAYERS ACTS AS AN ACOUSTIC TRAP.

P3 [L2] ETFE ABSORPTION

INCREASED THICKNESS TO ABSORB SOUND

THE THICKNESS PROVIDES GREATER ABSORPTION TO REDUCE THE ECHO

P4 [L2] ETFE TRANSPARENT

THINNER TO PROVIDE CLEARER VIEW

THE THINNER PANELS ALLOW A CLEARER VIEW TO THE OUTSIDE

P5 [L2] ETFE REFLECTION

REFLECT EARLY SOUND TO REAR OF THEATRE

AS CHILDREN ARE PERFORMING IT IS IMPORTANT TO INCREASE DISTRIBUTE AND ENHANCE EARLY SOUND TOWARD THE REAR OF THE THEATRE

P6 [L2] STAGE SECTION

SOLID FORM OVER PLAYGROUND

THE PLAYGROUND ABOVE WILL CREATE A LOT OF SOUND NOISE THEREFORE THIS SECTION WILL BE HEAVILY INSULATED

RATIONALIZING THE FORM OF ETFE

THE STRUCTURE WHICH SUPPORTS
THE ETFE NEEDS TO BE CREATE A
FORM WHICH CAN BE POSITIONED
WITH THE ETFE OUTER RAIN LAYER

DIVIDING THE CURVE TO PANELS

THE SPLITTING A 600MM GRID ALLOWS FOR THE DIFFERENT SIZED PANELS TO BE INSERTED INTO THE GRID TO CREATE DIFFERENT SOUND QUALITIES.

APPLYING ETFE TO THE GRID AND CURVE

USING THREE DIFFERENT FIXED SIZES TO CREATE THE DESIRED ACOUSTIC PATTERN

PANEL SIZE ACOUSTIC PROPERTIES

THINNEST HAS HIGHEST SOUND ABSORBANCY
MEDIUM SIZE OFFERS
SOME DEGREE OF SOUND
ABSORBANCY
THINNEST PANEL OFFERS
LITTLE SOUND
ABSORBANCY

VOLUME

ETFE VOLUME IS
CONSTANT
HOWEVER CHANGING
THE SIZE EFFECTS
THE SOUND
ABSORBANCY

In the case of ETFE cushions, they are kept continually pressurized by a small inflation unit which maintains the pressure at approximate. 220 Pa and gives the foil a structural stability and the roof some insulation properties.

220 Pa L2 [P4]

L2 [P2]

L2 [P3]

L2 [P5]

1500mm

3000

3000

3000

1500

RATIONALISING THE ACOUSTIC SKIN

L2

NET OF THE ACOUSTIC LAYER SCALE 1:100 @ A3

THE NET OF THE ACOUSTIC SHOWS THE DISTRIBUTION OF THE PANELS AND HOW THE STRUCTURE BEHIND WILL OPERATE

L1 [P1]

FIXED ZINC STANDING SEAM CLADDING TO REAR

THE ZINC CLADDING WILL BE MOUNTED ON A DOUBLE LAYER OF PLYWOOD AND THEN FIXED BACK TO STEEL CONNECTIONS.

L1 [P2]

THICKER ETFE - MINIMIZING ECHO REVERBERATION FROM RAINFALL

THE RAINFALL IS A MAJOR FACTOR THEREFOR IF A LARGER THICKENED OF ETFE CAN BE PLACED IN THIS SECTION THEN LESS SOUND WILL BE TRANSMITTED TO THE INSIDE

L1 [P3]

GUTTER POSITION TO COLLECT RUN OFF RAIN WATER

THE LARGE AMOUNT OF RAIN WATER WHICH IS COLLECTED OFF THE ROOF NEEDS TO BE COLLECTED IN A LARGE GUTTER SYSTEM.

L1 [P4]

RUN OFF FROM CONCRETE PLAYGROUND

DESIGNING THE INDIVIDUAL STEPS TO FALL WILL IMPROVE THE DRAINAGE FROM THE PLAYGROUND ROOF

L1 [P1] L1 [P2]

THE ZINC CLADDING WILL BE MOUNTED ON A DOUBLE LAYER OF PLYWOOD AND THEN FIXED BACK TO STEEL CONNECTIONS. THE RAINFALL IS A MAJOR FACTOR THEREFOR IF A LARGER THICKENED OF ETFE CAN BE PLACED IN THIS SECTION THEN LESS SOUND WILL BE TRANSMITTED TO THE INSIDE

THERMAL/RAIN LAYER

EXPLORING HOW THE RAIN SCREEN CAN BE OFFSET FROM THE ACOUSTIC SKIN TO REDUCE EXTERNAL NOISE

THE SECTION SHOWS THE DIFFERING SIZES OF

DESIGNING THE STRUCTURAL SYSTEM

CRANKING THE STEEL TRUSS AND BEAM

COUNTERING DEFLECTION WITH DEPTH OF STEEL

IF 1/10TH THE SPAN IS TAKEN FOR THE DEPTH OF THE STEEL AS A RULE OF THUMB FOR COMPONENTS BEING EFFECTED BY LOAD IN TWO DIRECTIONS THEN THIS WILL ALLOW ENOUGH DEPTH TO COUNTER THE NATURAL DEFLECTION.

ROTATING THE BEAM TO MINIMIZE THE VIEW OF THE STRUCTURE.

IF THE STEEL IS ROTATED THROUGH LESS THAN 45 DEGREES THEN THE DEPTH OF THE BEAM (X - IN THIS DIAGRAM) DOES NOT HAVE TO INCREASE TO TAKE THE LOAD.

BASEMENT PLAN

THE POSITION OF THE BEAM WHICH WILL TAKE THE LOAD OF THE CONCRETE PLAYGROUND AND THE STEEL TRUSS TAKING THE LOAD OF THE ETFE.

CRANKED STEEL -REDUCING VIEW OF THE STRUCTURE

RENDERED CUT SECTION

DESIGNING THE CRANKED STEEL COMPONENT

■ LOAD PATHS

RENDERED CUT SECTION

THE STEEL BEAM PICKS UP THE VERTICAL STEEL TRUSSES WHICH SUPPORT THE LIGHT ETFE ROOF. THE BEAM ALSO PICKS UP THE SPANNING CONCRETE STEPPED PLATES.

VIEW OF THE INTERNAL SIDE OF THE ACOUSTIC LAYER OF ETFE TOWARDS THE PLAYGROUND.

CONSTRUCTION DETAILS

KEY CONSTRUCTION DETAILS 1:20 @ A3

THIS SECTION SHOW THE KEY CONSTRUCTION DETAILS OF THE THEATRE SECTION WHICH HAVE BEEN DEVELOPED. THERE ARE FIVE POINTS WHICH HAVE BEEN EXPLORED AND WORKED UP TO DETAIL.

DETAIL 01

TOP OF ROOF -CANOPY MEETS STEELWORK

SCALE 1:20 @ A3

THE JUNCTION OF THE CANOPY MEETING THE STEEL STRUCTURE AT ROOF LEVEL IS AN IMPROTANT DETAIL. THE THERAML AND RAIN BARRIER IS RELIANT ON THE ETFE CONECTOR BLOCK AND THE STEEL JUNCTION

PRIMARY STRUCTURE

- Bespoke steel truss
 Bespoke steel Beam
 S.152mm SHS
 Bespoke Steel Column
 S.152mm SHS Welded
 Steel 6mm plate to top
 surface.
 Steel Truss End Plate
 Steel Flange 6mm

L2 - ACOUSTIC ETFE SKIN

- 8. Bolted steel Plate
 9. Steel Pin and Grip
 10. Steel Cable 6mm
 11. Conector Plate
 12. Extruded Aluminum Section
 13. Tie Pins
 14. ETFE Panel
 15. ETFE Air Inlet Pipe

L1 - THERMAL / RAIN ETFE SKIN

- 16. Timber Spacer 17. Extuded Aluminum Gutter 18. Aluminum Capping Element 19. ETFE Panel

OTHER

- 20. Air Pumping Plant 21. Inlet Piping 22. Elephant Grating 23. Steel Angle
- **RAIN SCREEN**

 - 160mm Insulation / 50 mm Insulation
 5. Damp Proof Membrane
 26. 2 No. Plywood backing
 Standing Seam Zinc Cladding

DETAIL 02

STEEL JUNCTION /GUTTER DETAIL AND ETFE SKINS

RENDERED DETAIL

THE JUNCTION OF THE STRUCTURAL BEAMS SPANNING TO SUPORT THE ETFE WILL BE PICKED UP BY A STEEL BEAM SPANNING IN THE HORIZONTAL DIRECTION. THIS BEAM WILL ALSO COLLECT THE RAIN WATER AND CHANNEL IT HORIZONTALLY TO THE WATER TANKS FOR THE GREY WATER RECYCLING SYSTEM. THERE WILL BE A CONCRETE PANEL SYSTEM WHICH WILL FORM THE ROOF OVER THE STAGE AND A STEPPED SEATING ARRANGEMENT FOR THE OUTDOOR PLAY AREA.

DETAIL 02

STEEL JUNCTION /GUTTER DETAIL AND ETFE SKINS

SCALE 1:20 @ A3

THE JUNCTION OF THE STRUCTURAL BEAMS SPANNING TO SUPORT THE ETFE WILL BE PICKED UP BY A STEEL BEAM SPANNING IN TH EHORIZONTAL DIRECTION. THIS BEAM WILL ALSO COLLECT THE RAIN WATER AND CHANNEL IT HORIZONTALLY TO THE WATER TANKS FOR THE GREY WATER RECYCLING SYSTEM. THERE WILL BE A CONCRETE PANEL SYSTEM WHICH WILL FORM THE ROOF OVER THE STAGE AND A STEPPED SEATING ARRANGEMENT FOR THE OUTDOOR PLAY AREA.

PRIMARY STRUCTURE

1.325x330mm RHS 2.165x215mm RHS 3.Bespoke steel truss 4.460x280mm RHS

L2 - ACOUSTIC ETFE SKIN

5.ETFE Clip System
6. Extruded Aluminum Section
7. ETFE Panel
8. Aluminum Flat
9. Extruded Aluminum Section
10. Aluminum Bracket
11. Barisol End Plate
12. Barisol ETFE Acoustic Membrane
13. Welded Steel Tab

L1 - THERMAL / RAIN ETFE SKIN

14. ETFE Panel 15. ETFE Vent Cord 16. Aluminum Packer

GUTTER DEATIL

17. Water Collection Point 18. Welded steel Plate 19. Dam Proof Membrane 20. Zinc Gutter Pressing 21. 50mm Insulation

OTHER

22. Steel Plate
23. Thickened Glass Handrail
24. Cast Concrete
25. Timber Stud
26. Acoustic Panels
27. Vent Position
28. Damp Proof Membrane
29. Ventilation Membrane
30. 2 no. - 160mm Insulation